

Gary Mikitin, AF8A

- Licensed since 1977 (first call, WD8MGP).
- Engineering degree from CWRU, 1984.

http://hamsci.org

- 34 years, working in the arc welding industry. Retired in 2018...no regrets!
- Typically heard on CW...contesting, ragchewing, DX'ing (such as it is, with only a 20m qtr wave vertical)

Today's Talk

The What - Why - Who - How of HamSCI

- HamSCI Basis and Purpose
- Citizen scientist volunteers
- Collegiate and community interactions
- Research Interests
- Past events
- Join our current and future research efforts
- Upcoming event: MSQP
- Getting involved

Ham Radio Science Citizen Investigation

HamSCI Booth at the 2023 Dayton Hamvention

Founder/Lead HamSCI Organizer: Dr. Nathaniel A. Frissell, W2NAF The University of Scranton

http://hamsci.org

A collective that allows university researchers to collaborate with the amateur radio community in scientific investigations.

Objectives:

- **1. Advance** scientific research and understanding through amateur radio activities.
- **2. Encourage** the development of new technologies to support this research.
- **3. Provide** educational opportunities for the amateur radio community and the general public.

Today's Talk

The What - Why - Who - How of HamSCI

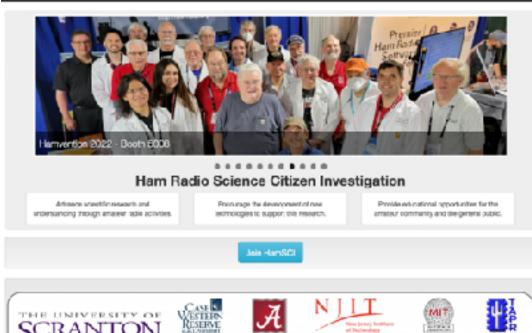
- HamSCI Basis and Purpose
- Volunteers, aka citizen scientists
- Collegiate and community interactions
- Research Interests
- Past events
- Join our current and future research efforts
- Upcoming event: MSQP
- Getting involved

Citizen Science

"Scientific work, for example collecting information, that is done by ordinary people without special qualifications, in order to help the work of scientists."

NASA-supported projects involving citizen scientists:

science.nasa.gov/citizen-science/



HamSCI's Research and Citizen Science Focus

low Jensey Roddbar of Perilmentary

7

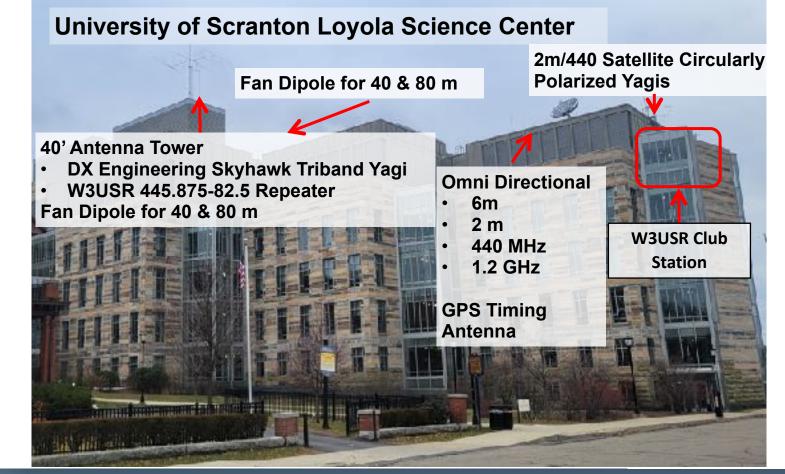
HamS Getinvelved Publications and Presentations Cota D, Search (Josef)

hamsci.org

LEGULT UNIVERSITY

.A.

Today's Talk


The What - Why - Who - How of HamSCI

- HamSCI Basis and Purpose
- Citizen scientist volunteers
- Collegiate and community interactions
- Research Interests
- Past events
- Join our current and future research efforts
- Upcoming event: MSQP
- Getting Involved

W3USR Weekly Open House

Ham Gear

- HF
 - Icom IC-7610
 - Icom IC-7300
 - Acom 1010 Amplifier
- VHF/UHF/Satellite
 - Icom IC-9700
 - Yaesu FT-400D
- 445.875 82.5 W3USR Repeater

Funding & Donations

- \$196,241 Grant from ARDC
- \$20,000 Private Donations

http://hamsci.org

• NSF, DX Engineering, and WN3A

Construction

 Professionally Designed and Installed by Broadcast Sciences, LLC (Jeff DePolo WN3A)

Active HamSCI Collegiate Stations

W3USR

Today's Talk

The What - Why - Who - How of HamSCI

- HamSCI Basis and Purpose
- Citizen scientist volunteers
- Collegiate and community interactions

Research Interests

- Past events
- Join our current and future research efforts
- Upcoming event: MSQP
- Getting involved

The lonosphere

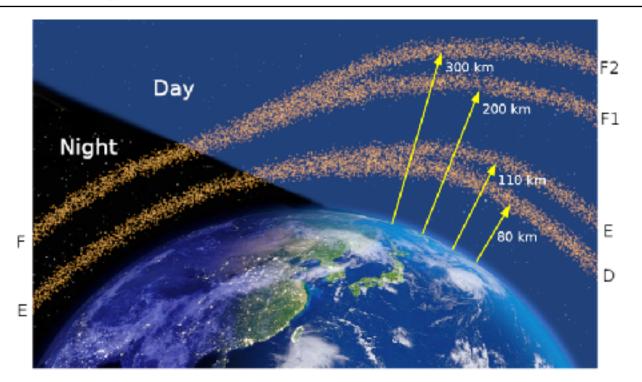


Figure by Carlos Molina (commons.wikimedia.org)

The Ionosphere: An Common Area of Interest

The ionosphere is a prime area of interest for HamSCI. It is a prime area of interest for hams. The trick is to combine efforts so that everyone benefits.

Hams can contribute to HamSCI in many different ways:

- Assisting with new equipment design, test, debugging
- Hosting scientific instruments, generating research-worthy data (PSWS)
- Using or acquiring skills related to data analysis, authoring general interest articles and/or technical papers for science publications and conferences
- Joining HamSCI meetings and telecons opportunites for learning
- Participating in events on the ham bands, such as contests and operating challenges. These events can be 'just for fun' or they could be for data generation.

Today's Talk

The What - Why - Who - How of HamSCI

- HamSCI Basis and Purpose
- Citizen scientist volunteers
- Collegiate and community interactions
- Research Interests
- Past events & accomplishments
- Join our current and future research efforts
- Upcoming event: MSQP
- Getting involved

HamSCI Eclipse Operating Events - 2017, 2023, 2024

HamSCI sponsored two very different operating events during the past eclipses

Solar Eclipse QSO Party: A fairly typical low band contest, for CW, SSB and FT8

Gladstone Signal Spotting Challenge: A unique event, a contest of sorts, but for one-way transmissions (using digital modes WSPR and FST4W, from the WSJT software package)

Combined, the logs from the most recent events created over 760,000 data points (Oct, 2023 eclipse), and over 1.1 million data points (Apr, 2024 eclipse)

GRAPE & WSPRDaemon HF GRAPE Doppler Receivers

Developed as the "GRAPE" Receiver led by John Gibbons N8OBJ, Case Western Reserve University / Case Amateur Radio Club W8EDU.

Primary objective is to measure Doppler Shift of HF standards stations like WWV & CHU. (GRAPE = Great Radio Amateur Propagation Experiment)

GRAPE v1

- Single Frequency
- hamsci.org/grape1

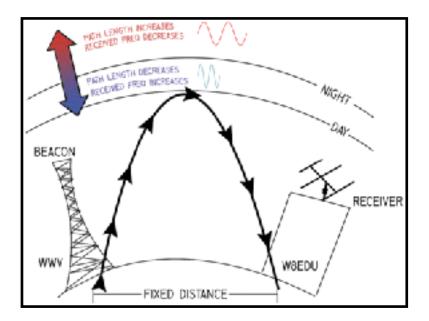
GRAPE v2

- 3 Simultaneous Frequency Bands •
- Build it yourself Preassembled
 - 30 Deployed for Total Eclipse •

WSPRDaemon-GRAPE

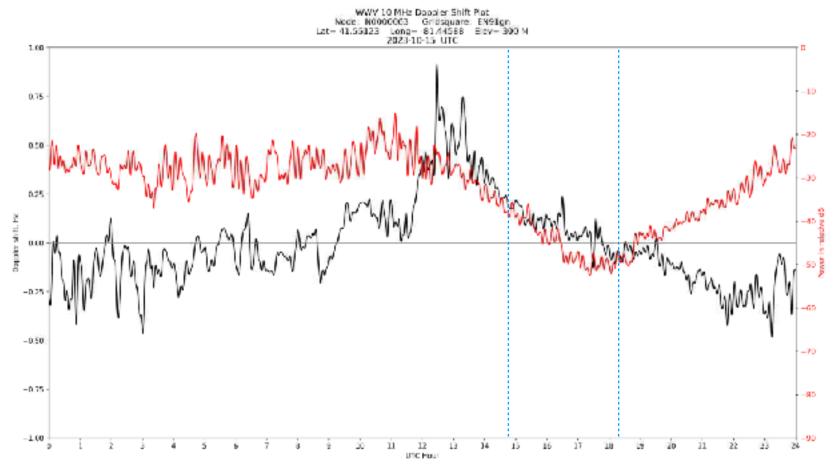
- Uses RX-888 HF SDR, KA9Q-Radio & ٠ WSPRDaemon Software
- 9 (or more!) simultaneous HF Doppler bands
- Decodes WSPR/FST4W spots, too!

GRAPE PSWS - Doppler Shift Measurements

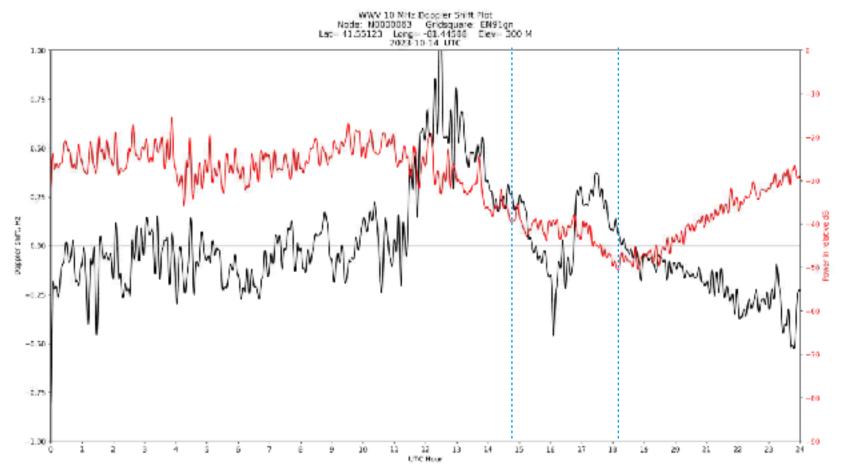

19

A full explanation of the science behind the Grape PSWS is beyond the scope of this talk.

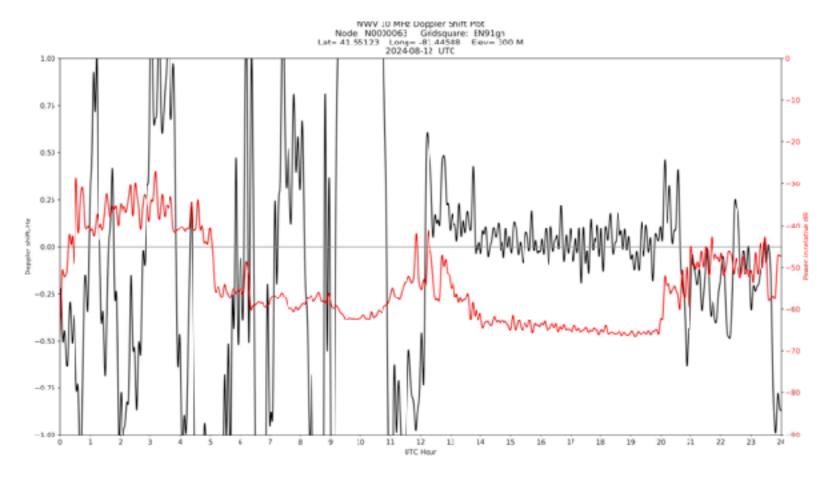
In the simplest of terms, we can sense the bottomside of the ionosphere by measuring the received frequency of stations such as WWV to milliHertz precision.


Grape hosts can easily see ionospheric changes in their stations data.

http://hamsci.org


Full details on how to build, how to participate and the science behind the PSWS, visit hamsci.org/grape

Grape 1 Doppler Plot - Quiet Solar Conditions



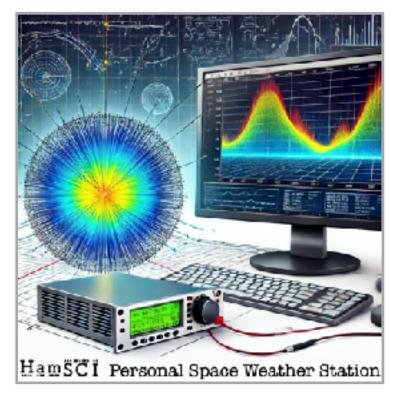
20 sci.org

Grape 1 Doppler Plot - Annular Eclipse Day

Grape 1 Doppler Plot - Geomagnetic Storm

Today's Talk

The What - Why - Who - How of HamSCI

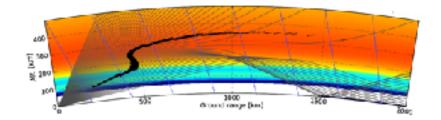

- HamSCI Basis and Purpose
- Citizen scientist volunteers
- Collegiate and community interactions
- Research Interests
- Past events & accomplishments
- Join our current and future research efforts
- Upcoming event: MSQP
- Getting involved



HamSCI PSWS Network: Call for Hosts

The HamSCI Personal Space Weather Station (PSWS) Network is a Distributed Array of Small Instruments (DASI*)

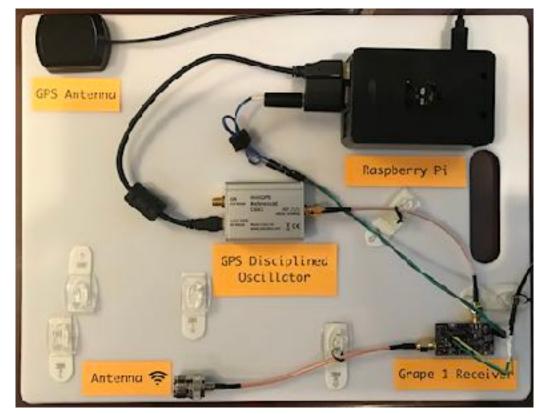
*NSF Funding Program 24-538 announced February 9, 2024



HamSCI PSWS Network: What and Why

What it is: An interconnected system of instruments, making frequent measurements across a wide geographic area

Why build it: The network will help in understanding the local, regional, and global scale processes that are essential for addressing fundamental questions in solar and space physics.



History Lesson: HamSCI's GRAPE Network

HamSCI, thorugh its volunteers and participating institutions, designed and deployed the GRAPE* series of instruments prior to the North American solar eclipses in 2023/24.

*GRAPE = Great Radio Amateur Propagtion Experiment

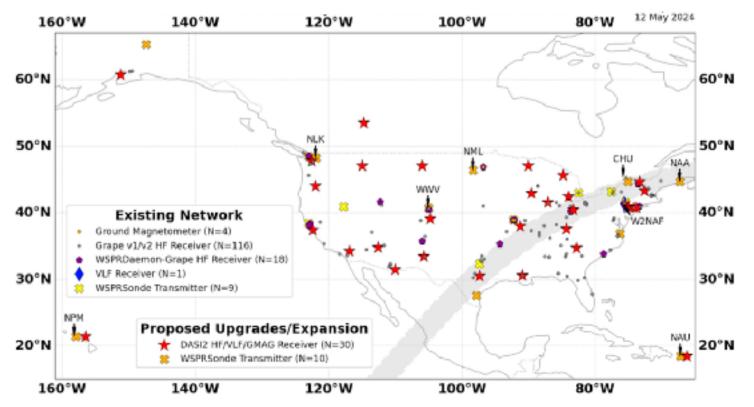
http://hamsci.org

HamSCI PSWS Network

Definition: An interconnected system of instruments, making frequent measurements across a wide geographic area

Goal: Determine the local, regional, and global scale processes that are essential for addressing the fundamental questions in solar and space physics - including radio wave propagation

PSWS Network: Frequent Measurements


HamSCI's current GRAPE* instruments are operating 24/7/365, creating, at a minimum, one data point *per second, per instrument*

The future PSWS instruments will operate similarly - monitoring, collecting, uploading data to a central server

*GRAPE = Great Radio Amateur Propagation Experiment To learn more about GRAPEs, visit hamsci.org/psws

# Station Node Number	N0000063			
∉ Callsign	AFBA			
# Grid Square	EN9tgn			
# Lat Long Bev	41.55123 -61.4585 300			
∉ City State	Mayfield Wilsge OH			
# Fadio 11D	Grapo_Gen_1_Rovr_1			
≇ Antenna	Chameleon BXL Loop			
# Frequency Standard	LB GPSDO			
∉ System Info	RasPMB			
# Beacon Now Decoded	WWV10			
UTC	Freq	Rog Br	Vpk	dBV(Vpk
2025-01-31T00:00:00Z	8999999.768	-0.211	0.027566	-31.1
2025-01-31T00:00:01Z	8899993.995	-0.005	0.033579	-29.4
2026-01-31T00:00:02Z	1000000.007	0.007	0.038137	-28.3
2025-01-31T00:00:03Z	8999999.920	-0.080	0.045220	-25.8
2025-01-31T00:00:047	8899993.845	-0.155	0.045637	-26.8
2026-01-31T00:00:06Z	5999999.603	-0.897	0.037036	-28.6
2025-01-31T00:00:07Z	8999998.535	-0.465	0.032896	-29.6
2026-01-31T00:00:082	9999999.570	-0.480	0.031376	-90.0
2025-01-01T00:00:092	8999999/904	-0.386	0.034110	-29.3
2025-01-31T00:00:107	8999998.838	-0.162	0.036455	-28.7

PSWS Network: Wide Geographic Coverage

hamsci@hamsci.org

HamŠČÏ

http://hamsci.org

Expanded PSWS Network: Key Elements

Rx Hardware: Three Instruments

• Wideband HF SDR, VLF Receiving Apparatus, Ground Magnetometer

Tx Hardware

WSPRSonde 8-band WSPR/FST4W GPS disciplined transmitter

Host Locations

- Rx: Co-Located Hardware: HF+VLF+Magnetometer
- Rx: A Suitable Electromagnetic Environment (ie RF quiet)
- Rx: Reliable Internet
- Tx: Multi-band antenna(s), 80-6 meters
- Reliable power

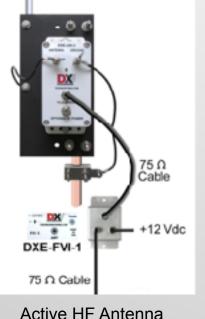
PSWS Network: Critical Elements

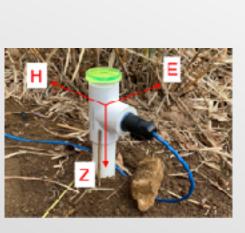
Rx Hardware: Three Instruments

• Wideband HF SDR, VLF Receiving Apparatus, Ground Magnetometer

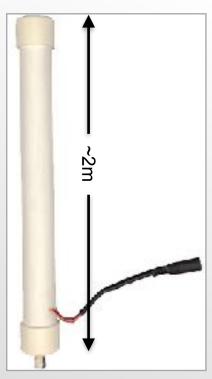
Tx Hardware

WSPRSonde 8-band WSPR/FST4W GPS disciplined transmitter


Host Locations


- Rx: Co-Located Hardware: HF+VLF+Magnetometer
- Rx: A Suitable Electromagnetic Environment (ie RF quiet)
- Rx: Reliable Internet
- Tx: Multi-band antenna(s), 80-6 meters
- Reliable power

PSWS Network: Rx Hardware



WSPRDaemon Grape Based on RX888 SDR

Ground Magnetometer

Active VLF Antenna + VLF rx equipment

Images for discussion purposes only - not to scale - actual hardware may be quite different!

PSWS Network: Critical Elements

Rx Hardware: Three Instruments

• Wideband HF SDR, VLF Receiving Apparatus, Ground Magnetometer

Tx Hardware

WSPRSonde 8-band WSPR/FST4W GPS disciplined transmitter

Host Locations

- Rx: Co-Located Hardware: HF+VLF+Magnetometer
- Rx: A Suitable Electromagnetic Environment
- Rx: Reliable Internet
- Tx: Multi-band antenna(s), 80-6 meters
- Reliable power

Rx Site Selection Challenge

Herein lies the challenge, finding sites which are...

...'RF Quiet' - on the HF bands. This means minimal noise sources (EMI, powerful local transmitters, mixing products)

...'open field' sites for the VLF antenna - with significant separtion from sources of mains harmonics

...able to bury a ground magnetometer, location free from electromagnetic influences (current carrying conductors, vehicles, etc.)

Intellectual Merit

This project will establish the only wide-spread, coordinated HF, VLF, and ground magnetometer measurements distributed primarily across the midlatitude region.

Once deployed, this enhanced PSWS network will enable researchers to investigate both local and continental space effects, including those caused by traveling ionospheric geomagnetic storms.

Continued support of the network will enable the ongoing collection of a dataset spanning the peak years of Solar Cycle 25, and support future studies of long-term climatology.

Intellectual Merit

This project will establish the only wide-spread, coordinated HF, VLF, and ground magnetometer measurements distributed primarily across the midlatitude region.

Once deployed, this enhanced PSWS network will enable researchers to investigate local, regional and continental space weather effects, including those caused by traveling ionospheric geomagnetic storms.

Continued support of the network will enable the ongoing collection of a dataset spanning the peak years of Solar Cycle 25, and support future studies of long-term climatology.

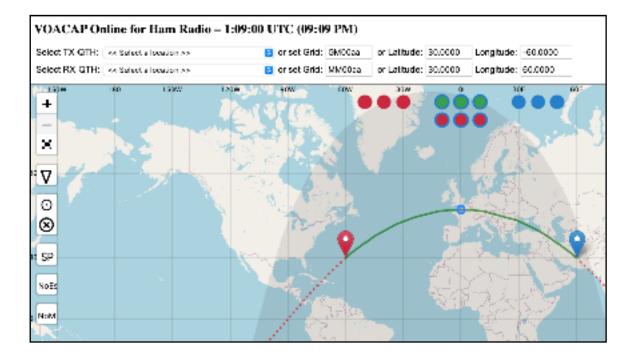
36

Intellectual Merit

This project will establish the only wide-spread, coordinated HF, VLF, and ground magnetometer measurements distributed primarily across the midlatitude region.

Once deployed, this enhanced PSWS network will enable researchers to investigate both local and continental space effects, including those caused by traveling ionospheric geomagnetic storms.

Continued support of the network will enable the ongoing collection of a dataset spanning the peak years of Solar Cycle 25, and support future studies of long-term climatology.



What's in it for Hams

What's in it for hams? Long term benefits of participation:

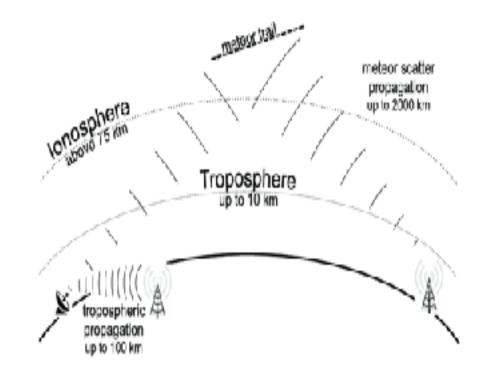
- Improved understanding of HF propagation
- Improved models of the ionosphere leading to more accurate propagation forecasts
- Satisfaction from contributing to science!

http://hamsci.org

Today's Talk

The What - Why - Who - How of HamSCI

- HamSCI Basis and Purpose
- Citizen scientist volunteers
- Collegiate and community interactions
- Research Interests
- Past events
- Join our current and future research efforts
- Upcoming event: MSQP
- Getting involved


Meteor Scatter QSO Party 2025

August 11–12 & December 12–13, 2025

Introduction to Meteor Scatter

- Definition: Radio signals reflected by ionized meteor trails in the atmosphere.
- Why HF? Underexplored compared to VHF; potential for novel data on:
 - Geographic reach of reflections.
 - Persistence of ionization (seconds to minutes).
 - Multi-layer interactions (E and F layers).
- Science Motivation: Enhance propagation models for space weather forecasting.

http://hamsci.org

hamsci@hamsci.org

HamSCI

Meteor Scatter QSO Party 2025

August 11–12 & December 12–13, 2025

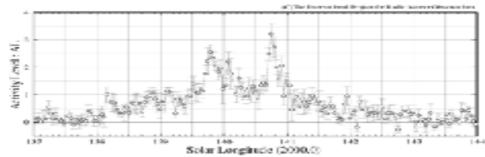
Key Dates & Meteor Showers

Perseids:

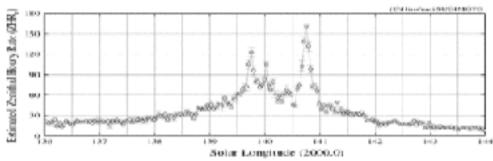
- Dates: 0000 UTC Aug 11 2400 UTC Aug 12, 2025.
- Peak ZHR: ~100 meteors/hour (pre-dawn optimal).

Geminids:

- Dates: 0000 UTC Dec 12 2400 UTC Dec 13, 2025.
- Peak ZHR: ~120 meteors/hour.


Why 48 Hours?

- Capture global "early morning" peaks across time zones.
- Local pre-dawn (0400–0600 hours).


http://hamsci.org

• Peak meteor showers (100–120 meteors/hour).

Pro Tip: "Set your alarm – the early ham gets the ping!"

Activity Level Index (AL) from worldwide radio meteor observations during the Perseids 2024 meteor

Estimated Zenithal Hourly Rate (ZHRr) from worldwide radio meteor observations during the Perseids 2024 meteor shower. The graph highlights the intensity of meteor activity.

Meteor Scatter QSO Party 2025

August 11–12 & December 12–13, 2025

Technical Requirements

Bands & Frequencies:

- 10m: 28.145 MHz (USB) *Primary focus*.
- 6m: 50.280 MHz VHF baseline comparison.

Mode: MSK144 – Configured for:

 72ms bursts, Fast/Deep decode, Rx 1500 Hz, F Tol 100–200 Hz.

Software:

- WSJT-X v2.6+ (logging timestamps, SNR, grid squares).
- Send your reception repots to PSK Reporter in real time! (That's a configuration setting in WSJT-X)
- Operating is very similar to FT8

_			Lindact	12			2	_		_	RX NOMES			
TC .	a	T Freit	New and the				100	12	T. Jose	30	19925	_	-	
2520	150.00	100 5 500 W	ADDIG NO	K-105-165	4.9.4.1		125200	15	2.0 350		100.00221466		100.045	
30035	- 1	1.1 1454 6		CODE TRUCT	7 11 -5.0	100	128918	Te	1811		IR ABLOC RALE			
A 632	-4	A LEW R	10.00	A1641 \$\$20	2 - C + 2 A		122945	TX -	1507		HIGH ADDOC RADO	180.00		_
66.02		A DECK	AND CO. NO.	100 C 100	2 10 -1.1		3775		2.2 1225		LUC SYDE BRE		122	
6122	-	the second is	CO 242 46	ALLER MANY	8 9 - 2.4		133015	TR.	156		IR 12100 13		C. C. ALMON	-
00100		16 July 1	YO 337 H	CLAI #\$20	3 6 -5.9		130045	TX-	1000		IR \$3100 Th			
12130	-1		10 14T M	CODE TRUE	4.7.3.8		STATISTICS.	1.0	10.11.29		291	Obline Celebra		
1.200	-2 .	8 1991 V.1	10 00.00	2.94	7 4 42.5		JAARS.	-1	7.5 2424	4 00	DOT MALES IN		R -0.2	
6195	4.1	1.0 1.807 S	12,4857.0	ALC: NO.	2 3 . 4.1		120116	TV	1911		ACRE SALAC RE			
16292		TO DEE E		ALSE STOO	8 10 -L.S		109450	_	111 1003		HEC MARKET +31		2.42.4	
562.90	-	0.0 1900 a	The Real Property lies of	GLUI ESCO	1.1.1.1		133162	TR.	1241	_	COLC ABLOC BHO		-	_
AC235	1.1	CALCULATION OF		CAL THE	2 10 -1.1		100.00	1	ANY DESCRIPTION		HOC MARINE WAS		24.5	
Acres	33		ADUCC NA		4 4 -4.9		ALARA	25	100 100		ILU: MALLEUS BROC		6 -6 2	
Actes.	1	A. SAAS	IRIGA BL		2 8 3.4		mice	5	6.1. 1400		INC SEALARS BOT		1.1.1	
10232	1	the server &	18.000 80	ARE 28.0	2 2 48.5	1	199235	TA.	1923	1 10	SUBS ABLOC 78			
109.59	þ	A		NW	it see	and the	checkle				840.5	3/10	12	144
	3.	-	257 000	-		1.		100	100			- 600	12	
		50,	201 000	Tes	ven/lini	20	1		104	of the second	ece.	No.	Sec.	
	- 11	TKEA	- W.S	Re 191	H H L D	100	WEST	10105	7102			1.0	34	
W.		TR LAS			a 6	1						- 2		
100		WARD	10	1	and the second se		1/1/58/81	A6000	-00			G	78.5	
40					att 2				Out +	_		16		
SKS.		A110 1	20 8 3 2	1.16	a a 🗐		ANALSI	Analy.	CHE S			10	513	
10		1006.0			and the second se		WYSER	ARLOC	1991			10	79.5	
10.			and in the second se	ind)	241 ÷ 🗌			_	-					
100		204	7 Oct 21	34	- Road		WASH	48100	35			~ ®	191	
			7 U.S.I. Z.I		and the second									

WSJT-X in MSK144 Mode on 6m Band with Real-Time Meteor Scatter Decodes

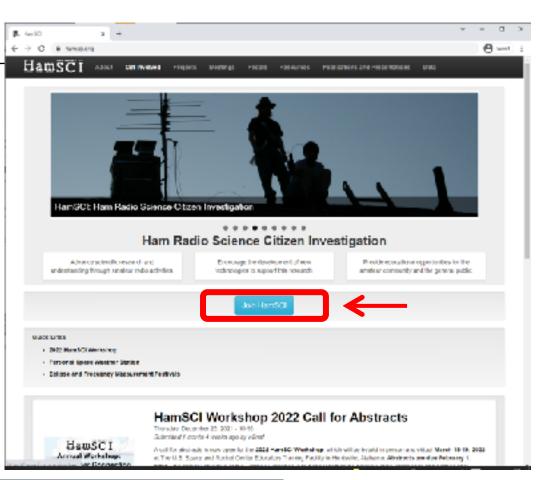
Today's Talk

The What - Why - Who - How of HamSCI

- HamSCI Basis and Purpose
- Citizen scientist volunteers
- Collegiate and community interactions
- Research Interests
- Past events
- Join our current and future research efforts
- Upcoming event: MSQP
- Getting involved

Getting Involved

- •HamSCI now has over 1400 members!
- Join by visiting hamsci.org
- •Our main **Google Group** is open discussion for all things related to HamSCI.
- Many specialized email lists!



Ham¢

http://hamsci.org

44

HamSCI Zoom Telecons - Join Us

TAPR/Tech Telecon	Engineering telecon to support the development of high performance sensing systems, such as the WSPR Daemon/GRAPE RX-888	Mondays at 9 PM Eastern (Tuesdays 0100z during EST)
PSWS Telecon	Telecon to support engineering and science related to the Personal Space Weather Station.	Thursdays at 10 AM Eastern (1400z during EST)
HamScience Telecon	Telecon to discuss science questions, observations and findings releated to HamSCI's research interests.	Thursdays at 4 PM Eastern (2000z during EST)

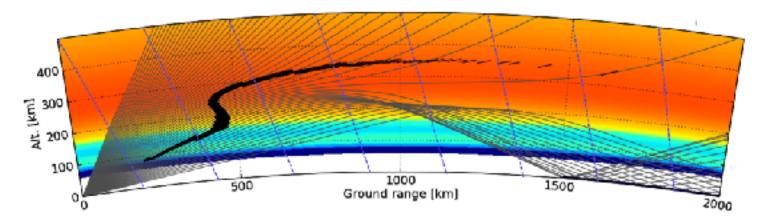
Zoom links and calendar at hamsci.org/get-involved

Publications

HamSCI research has been presented and published in many different forums, from general interest magazines to peer-reviewed papers, conferences, workshops, websites and PhD dissertations. Examples include:

- American Geophysical Union Publications:
 - Space Weather
 - Geophysical Research Letters
 - Journal of Geophysical Research: Space Physics
- Frontiers in Astronomy and Space Sciences
- Institute of Electrical and Electronic Engineers' Geoscience and Remote Sensing Letters
- Institute of Electrical and Electronic Engineers' Transacations on Antennas and Propagation
- CQ, Amateur Radio Communications & Technology (CQ Communications, Inc.)
- QEX, A Forum for Communications Experimenters (American Radio Relay League)
- QST (American Radio Relay League)

Acknowledgments


We are especially grateful for the

- support of NSF Grants AGS-2002278, AGS-1932997, AGS-1932972, AGS-2045755, AGS-2230345, and AGS-2230346.
- support of the NASA SWO2R Grant 80NSSC21K1772.
- support of Amateur Radio Digital Communication (ARDC).
- amateur radio community volunteers who have contributed to HamSCI projects.
- amateur radio community who voluntarily produced and provided the HF radio observations mentioned here, especially the operators of the Reverse Beacon Network (RBN, reversebeacon.net), the Weak Signal Propagation Reporting Network (WSPRNet, wsprnet.org), PSKReporter (pskreporter.info) qrz.com, and hamcall.net.
- use of the Free Open Source Software projects used in this analysis: Ubuntu Linux, python (van Rossum, 1995), matplotlib (Hunter, 2007), NumPy (Oliphant, 2007), SciPy (Jones et al., 2001), pandas (McKinney, 2010), xarray (Hoyer & Hamman, 2017), iPython (Pérez & Granger, 2007), and others (e.g., Millman & Aivazis, 2011).

One More Graph

15 MHz Raytrace Diagram

Questions?

Thank You!

